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ABSTRACT 

In the analysis of broadband sound fields in ducts, for example in aero-engine ducts, the 
assumption of 'Equal Energy per Mode' (EEpM) and incoherence between modes is 
frequently made. The practical realization of such a sound fields is valuable as a means of, for 
example, allowing liner attenuation measurements obtained from measurements on different 
test rigs to be compared directly, or for allowing measurements results to be compared with 
computer predictions in which the EEpM assumption is made.  
This paper describes a technique in which arrays of sound sources at the wall of a duct are 
driven by white noise signals to generate a sound field of prescribed modal energy 
distribution and modal coherence. The number of sources required for effective mode 
synthesis and the robustness of the processing as a function of frequency are also discussed.  
An example is presented in which an EEpM, incoherent broadband sound field is generated 
up to a maximum non-dimensional frequency of ka=20 using 150 sources. 
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INTRODUCTION 

There are many duct acoustic applications in which it is desirable to be able to generate a 
sound field of known modal content, for example, in the testing of liner performance, or as a 
calibrated sound field for the testing of different inlet geometries. The availability of a 
standardized in-duct sound field is available as a means of, for example, allowing the multi-
mode performance of different liners obtained from different tests to be compared directly, or 
allowing measurement result to be meaningfully compared directly, or allowing 
measurements results to be meaningfully compared with computer predictions. Presently, 
there are no guidelines for the definition of such a sound field, although in analysis of 
broadband sound fields in ducts, the assumption of ‘Equal Energy per Mode’ (EEpM) is 
frequently made.  
For the reason stated above, in-duct testing with an ‘Equal Energy per Mode’ sound field is 
desirable. However, creating such a sound field currently requires costly facilities. This paper 
is concerned with an alternative method that uses sound sources on the duct wall. 
Specification of the optimal filters driven by white noise signals has the advantage that it may 
be exactly reproducible. 

Theory 

Duct mode theory 
 
At a single frequency, an incident mode without reflection can be written in the form 
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mneaep αω −+ Ψ= ,  where, ( )2/1 kmnmn κα −=    (1) 

Here mna  are the modal amplitudes, k  is the free space wave number c/ω , c  is the 
sound speed in the duct, ω  is angular frequency. The wave numbers mnκ  are the modal 
eigenvalues that satisfy the hard walled boundary condition ( ) 0=′ aJ mnκ , where mJ  denotes 
the Bessel function of the first kind of order m , the prime signifies differentiation with 
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respect to the argument, and a  is the duct radius. And mnΨ  are the normalized mode shape 
function [1] given by 

( ) mn
im

mnmnmn NerJ /φκ=Ψ        (2) 

Uncorrelated Equal Incident Sound Power Per Mode 
 

The time-averaged sound power )(kaW +  incident at the open termination of the duct is given 
by 
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where ρ  is the ambient air density in the duct. Upon substituting Eq. (3) the integration can 
be performed using the orthogonal property of the mode shape function such that 
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If the sound power in each of the incident modes at a single frequency are assumed to be 
equal, from Eq. (4), and mode amplitudes uncorrelated (we treat the mode amplitude as 
random variables), this may by summarized as, 

{ }
{ } 





≠=

== −

)','(),(0

)','(),(2

*
''

12

nmnmaaE

nmnm
S
caE

nmmn

mnmn αϖρ
    (5) 

In the broadband problem, we wish to compute the optimal source strengths )(ωniq , obtained 
by Fourier Transform of the 'i th record length of )(tqni  of duration T  with cross spectral 

a
φ

Fig. 1. Wall mounted sources are located in source rings with equiangular distance. Each Source 
rings placed with equidistance between them. Sources are driven to construct predefined sound field.
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matrix qqS  which excites, in a least squares sense, a mode amplitude whose cross spectral 

matrix, from Eq. (5), is given by 
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where ),( nmk = . Here, ϖ  denotes the desired sound power per single mode in a unit 
frequency band. 
 
Optimal Source Strength Spectral Matrix 
 

We write the vector of mode amplitudes [ ]Niiii
T
i aaaa ⋅⋅= 321â  excited by the 

vector of source strengths [ ]Liiii
T
i qqqqq ⋅⋅= 321ˆ  in terms of a matrix of modal 

coupling factors G , 

eGqa += iiˆ          (7) 

the optimal estimate of ioi qq =  that minimizes the sum of squared errors 
)ˆ()ˆ( aaaaeeH −−= H  is given by 

iio aGq ˆ+=          (8) 

where [ ] HH GGGG 1−+ =  and denotes the pseudo-inverses of G . The source-strength of 

cross-spectral matrix may be written  
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Substituting Eq. (8) gives the optimal cross-spectral matrix, 
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H
aaqqo

++= GSGS         (10) 

The least-squares best estimate for the mode-amplitude cross-spectral matrix is given by 

H
qqoaa GGSS =ˆ          (11) 

 
Realization, Optimal Shaping Filters 
 
We assume that the volume velocities can be generated by a square matrix of shaping filters 
H  driven by a number of white noise input signals x  

Hxq =so          (12) 

)()()()()()()( ,22,11,, ωωωωωωω NNiiisoi xHxHxHq +++= L     

The source cross-spectral matrix is then given by 

H
xxqqo HHSS =          (13) 

For simplicity we assume x  comprise uncorrelated white noise signals with variance 2σ , 

then qqoS  becomes 

Hqqo HH
S

=2σ
         (14) 

The shaping filter matrix H  can be acquired by decomposing Hermitian matrix qqoS . 

SIMULATION RESULTS 

We now present computer predictions at a single (non-dimensional) frequency of 15=ka . At 
this frequency there are total of K  modes, the highest spinning mode that can be propagate 
is 13max =m , and the largest number of radial modes with common ‘ m ’ value is 5max =n  
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Fig. 2.  Non-dimensional frequency ka=15 for both graph. For left figure 2a, 5 source rings with 27 
sources per rings are used to perfect EEpM sound field construction. For right figure, 4 source rings 
with 16 sources are failed to construct EEpM sound field. 

for 0=m . The sampling (Nyquist) theorem suggests that perfect sound field construction is 
possible (i.e. without aliasing and hence modal spillover) for numbers of sources in a given 

ring, 12 max += mM source , and for numbers of rings maxnNring = . These criteria applied to the 

current problem suggests that the use of 5 source rings separated half a wavelength apart, each 
ring containing 27 sources. Predicted results for this case are shown figure 2a below. Upper 

part of figure 2a shows ϖ/nmW  plotted against the modal cuton ratio mnα . ( 0=α  denotes a 

mode just cuton and 1→α  denotes a mode very well cuton). Negative α  values denote 
modes spinning in the opposite direction. Lower part of figure 2b shows the modal coherence 
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Fig. 3. Left figure 3a shows the optimum number of sources per ring and source rings to construct
EEpM Sound field vs ka. Right figure 3a shows total source number vs ka. Both graph compares
number of sources with number of modes. 
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plotted against cuton ratio (only positive α  values are shown for compactness). 
The predictions show exactly equal energy per mode has been excited, with different modes 
being perfectly incoherent (except of course along the diagonal in figure 2a since each mode 
must be perfectly coherent with itself).  
Figure 3b shows number of optimal sources for perfect sound field construction is slightly 
above the number of total modes. From figure 3a, we can see that number of total spinning 
mode 12 max +m  is much more than the number of sources in one source ring. With 
insufficient number of sources per ring, perfect sound field construction is enabled. For, 
spinning mode is coupled with axial wave number. Perfect construction is enabled with 
enough number of source rings in axial direction. 

 Adding small noise in qqS matrix makes estimated mode amplitude matrix aaS  

unsatisfactory. Figure 4 shows the effect of adding –40dB random noise to qqS  matrix. From 

Eq. (11), we can notice the condition number of G  matrix is related with magnification of 
errors in aaS  matrix [2]. As non-dimensional frequency ka  goes high, number of mode 
increases. It makes condition number of G  high. However, in real situation, small damping 
in wall makes near evanescent mode decay. If we do not concern about near-evanescent mode, 
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Fig. 4. ka=15, 27 sources per source ring, 5 source rings. Adding -40dB noise in the Sqq
matrix cause construction of EEpM sound field totally unsatisfactory. 
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the condition number will be better.  
We get the shaping filter for the case that ka ranges from 0.5 to 20, radius of duct is 1 meter, 
19 sources per rings, 8 rings in duct, and distance between each source ring is 1m, without 
adding noise. It seems like that as ka increases, the magnitude of shaping filter increases. It 
means volume velocity source in duct wall be large in high frequency. 

CONCLUSIONS 

The technique for generating broadband sound field of equal energy per mode and modal 
incoherence characteristics with wall-mounted sources is described. Optimal number of 
sources compared to Nyquist theorem and robustness to noise is also discussed. Pressure 
signal in the duct from wall-mounted sources driven by white noise can be acquired using 
shaping filters. The characteristic of EEpM pressure signal will be studied later.  
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Brain Korea 21 Project. 
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Fig. 5. Example of Shaping filters, 19 sources per rings, 8 source rings with 1m space. 
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